

BET-MAX

Electrospray Thruster System

High-resolution compact electrospray thrusters enabling precise, low noise attitude and orbital control.

Extremely precise thrust control on the order of nano-Newtons for pointing accuracy that exceeds reaction wheels by 100x.

Busek's BET-MAX precision reaction control system provides the high-resolution control by using electrospray propulsion technology. Up to four 125 cm³ BET-300-P thrusters per centralized PPU can be positioned as desired to provide attitude or orbital control within platforms as small as 3U.

Each thruster can provide throttled continuous thrust from $<1\mu N$ up to $150\mu N$ with sub- μN resolution over the full range. The thruster modules include sufficient propellant storage to provide over 90Ns of impulse and all associated feed components.

Input Voltage:	28 V (customizable)	
Pressurant:	None	
System Power:	Configuration dependent	
System Mass:	0.8 kg BOL	
Interface:	RS-485	
System Volume:	1250 cm³ (electronics, 4 thrusters, cathode)	

Mission Application Examples:

Spacecraft Attitude Control:

- Ultra-precise spacecraft pointing
- Deep space reaction wheel de-saturation

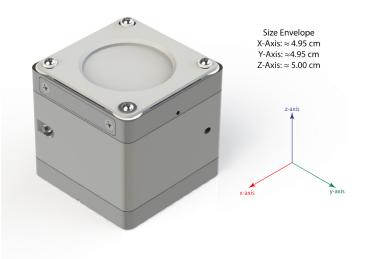
Disturbance Compensation:

- LEO drag compensation
- Gravity science

Precision Pointing Applications:

- Exoplanet / stellar observations
- Situation awareness
- Laser communications

Formation Flight:


- Non-Keplerian orbits
- Inspection / service
- Occultation sources
- Distributed apertures

Thruster

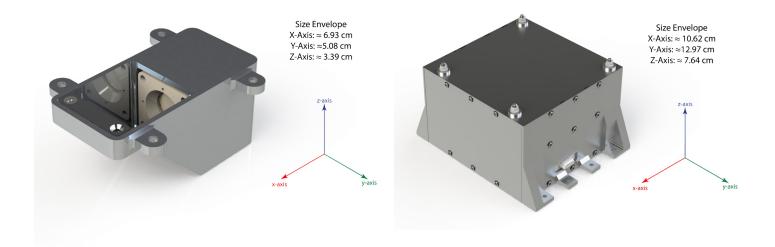
The BET-MAX system consists of four BET-300-P passively-fed electrospray thrusters, one long-life and propellant-less Carbon Nanotube Field Emission Cathode (CNTFEC), controlled from a common set of electronics. The thrusters can be ganged in a common thrust vector for translational thrust, or easily distributed across a spacecraft for precision pointing applications.

Individual thrusters can provide throttled continuous thrust from <1uN up to 150uN, with sub-uN thrust noise (0.2uN/rtHz) over the full range of operational settings. Impulsive operation is also possible, with a minimum impulse of 2uNs.

Each individual thruster assembly includes integrated propellant storage and feed system sufficient for ~90Ns of total impulse (scalable tanks are available). Multiple engineering model thrusters have been subjected to and successfully passed environmental testing followed by full demonstration of total impulse capability.

Table: BET-300-P Configurations

	Configuration A	Configuration B
Propellant:	EMI Im	EMI Im
Nominal Thrust:	55 μN	55 μΝ
Maximum Thrust:	150 μΝ	100 μΝ
Minimum Impulse Bit:	2 μNs	2 μNs
Specific Impulse:	850 seconds	2300 seconds
Efficiency:	28%	45%
Total Impulse:	92 Ns*	250 Ns**
Wet Mass:	166 g	166 g
Volume:	118 cm ³	118 cm ³
Nominal Power:	0.85 W	1.38 W
Maximum Power:	2.25 W	2.50 W
System Nominal Power:	12 W	14 W
System Max Power:	24 W	24 W


^{*}Demonstrated, **Pending, 50Ns demonstrated to date, test ongoing

Cathode and PPU

Flight model power processing unit (PPU) electronics include an integrated digital control interface unit with communication to the spacecraft via RS-422; each PPU is capable of driving up to four thrusters simultaneously, and independently across discrete channels.

Spacecraft charge neutralization is achieved using Busek's patented and flight qualified ½" CNTFEC. Integrated DCIU functionality include both real-time and scripted operation, with integrated thrust control modes.

